隨著溫度上升,轉子和汽缸以各自的死點為基準膨脹時兩者產生的相對膨脹差。轉子膨脹大于汽缸膨脹的為正脹差,反之為負脹差。習慣上規定轉子膨脹大于汽缸膨脹時的脹差值為正脹差,汽缸膨脹大于轉子膨脹時的脹差值為負脹差。根據汽缸分類又可分為高差、中差、低I差、低II差。脹差數值是很重要的運行參數,若脹差超限,則熱工保護動作使主機脫扣。
使脹差向正值增大的主要因素簡述如下:
1)啟動時暖機時間太短,升速太快或升負荷太快。
2)汽缸夾層、法蘭加熱裝置的加熱汽溫太低或流量較低,引起汽加熱的作用較弱。
3)滑銷系統或軸承臺板的滑動性能差,易卡澀。
4)軸封汽溫度過高或軸封供汽量過大,引起軸頸過份伸長。
5)機組啟動時,進汽壓力、溫度、流量等參數過高。
6)推力軸承磨損,軸向位移增大。
7)汽缸保溫層的保溫效果不佳或保溫層脫落,在嚴禁季節里,汽機房室溫太低或有穿堂冷風。
8)雙層缸的夾層中流入冷汽(或冷水)。
9)脹差指示器零點不準或觸點磨損,引起數字偏差。
10)多轉子機組,相鄰轉子脹差變化帶來的互相影響。
11)真空變化的影響。
12)轉速變化的影響。
13)各級抽汽量變化的影響,若一級抽汽停用,則影響高差很明顯。
14)軸承油溫太高。
15)機組停機惰走過程中由于"泊桑效應" 的影響。
使脹差向負值增大的主要原因:
1)負荷迅速下降或突然甩負荷。
2)主汽溫驟減或啟動時的進汽溫度低于金屬溫度。
3)水沖擊。
4)汽缸夾、法蘭加熱裝置加熱過度。
5)軸封汽溫度太低。
6)軸向位移變化。
7)軸承油溫太低。
8)啟動進轉速突升,由于轉子在離心力的作用下軸向尺寸縮小,尤其低差變化明顯。
9)汽缸夾層中流入高溫蒸汽,可能來自汽加熱裝置,也可能來自進汽套管的漏汽或者軸封漏汽。
啟動時,一般應用加熱裝置來控制汽缸的膨脹量,而轉子主要依*汽輪機的進汽溫度和流量以及軸封汽的汽溫和流量來控制轉子的膨脹量。啟動時脹差一般向正方向發展。
汽輪機在停用時,隨著負荷、轉速的降低,轉子冷卻比汽缸快,所以脹差一般向負方向發展,特別是滑參數停機時尤其嚴重,必須采用汽加熱裝置向汽缸夾層和法蘭通以冷卻蒸汽,以免脹差保護動作。
汽輪機轉子停止轉動后,負脹差可能會更加發展,為此應當維持一定溫度的軸封蒸汽,以免造成惡果。
啟動過程中可以通過以下手段來控制脹差:
(1)控制主、再蒸汽的溫度變化率;
(2)控制負荷的變化速度
(3)調整軸封供汽溫度的高低及供汽時間的長短;
(4)調整蒸汽加熱裝置的投入時間和所用汽源的溫度;
(5)暖機時間的長短;
(6)在升速過程中也可適當調整凝汽器真空。